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ABSTRACT: 

We propose designing and training RNNs for univariate time series data to forecast future values on S&P 500 

data. Firstly, time series data will be prepared, within a single LSTM layer framework that will help to predict 

stock index values. Secondly, we will build a deep RNN with three inputs to classify asset price movements. 

Lastly, we will combine 2 layer, stacked LSTM with learned embedding’s and one-hot encoded categorical data. 

The paper also gives a brief overview of Recurrent Neural Networks and their popular architectures currently 

in use.  

1. INTRODUCTION: 

The conventional neural network like Feedforward Neural Networks treat every sample feature vector 

as identically distributed and independent. As such they don’t incorporate previous data samples, while 

evaluating current observation and are memoryless. Recurrent Neural Networks on the other hand are 

memory based neural networks. What truly sets them apart from CNN’s and other neural networks is 

that each output is obtained using both previous information and new one, which, in recurrent format, 

when used for given set of fixed computations, enables a parameter sharing across deeper 

computational graph.  

1.1 Neural Networks: Neural Networks are supervised type Machine Learning algorithm that imitate 

the functioning of brain cells or neurons. The supervised Machine learning algorithms are used to 

generate or predict a set of labels for new data, based on learnings from a fixed set of previous data. 

The output can be Continuous (Regression) or Discrete (Classification). 

The associations of the organic neuron are displayed as weights. A negative weight signifies inhibitory 

associations; while positive weight mirrors an excitatory association. All data sources are changed by 

a weight and added, in the form of a linear combination. At last, an activation function controls the 

output’s amplitude. For instance, a satisfactory result is normally somewhere in the range of 0 and 1, 

or it very well may be ± 1.  

1.2 Recurrent Neural Networks: RNNs are neural networks for successive information, thusly we 

apply them to time series. The fundamental thought behind repetitive neural organizations is utilizing 

not just current inputs, yet in addition, the past data, for making the current forecast. This thought bodes 

well as we could fabricate neural networks passing qualities forward as expected. Although, such 

straightforward arrangements generally don't fill in true to form. They are difficult to prepare and might 

perform as expect. Or maybe, we have to have a framework with some sort of memory. RNNs find 
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their use in sequential data wherein we find patterns evolving over time and the learning usually 

incorporates memory of previous data-points.  

 

Different Sequence to Sequence models 

 

 

RNN’s maintain an internal state capturing information about previous items. A baseline model or a  

computational graph (uncontrolled) is shown below that has two weight matrix’s given by 𝑊ℎℎ and 

𝑊ℎ𝑥 applicable to previous and current inputs respectively. The output is given by 𝑦𝑡 which is obtained 

by matrix multiplication and the resultant passed through an activation function like 𝑅𝑒𝐿𝑈 or tanh 𝑥  
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1.3 Backpropagation algorithm is carried out from right to left (output to input side), post updating 

the weights in the forward pass from left to right i.e. input to output vis-à-vis unrolled computational 

graph. It constantly evaluates a loss function and calculates its gradient (∇) w.r.t. parameters to update 

weights. Hence the name, backpropagation.  

2. RNN ARCHITECTURE REVIEW 

1. Output Recurrence and teacher forcing: The computational difficulty of hidden state 

recurrences stems from connecting a unit’s hidden state to itself. This can be eased by 

connecting it to the output directly. As such, it has capacity w.r.t baseline model decreases but, 

parallel training of decoupled time steps is possible. But, for effective learning, it is also 

imperative that the train samples reflect this information for backpropagation to update weights 

consequently. Financial data usually doesn’t meet this requirement as asset returns are usually 

uncorrelated to previous values. The simultaneous integration of prior output and input vectors 

in called teacher forcing.  

 

2. Bi-Directional RNN: It can sometimes be relevant that output may rely on future elements too. 

As such Bi-directional RNN’s are known to link 2 hidden layers of opposite-directions, to same 

output. Therefore, we can obtain such a network, by splitting a regular RNN’s neurons into 2 

directions, in such a way that, the output layer can get information backwards (from past) and 

forward (from future) states simultaneously. General structures are depicted as: 
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3. Encoder-Decoder architecture, attention and transformers:  Encoder-decoder architectures 

allow for equal length input & output sequences. The encoder is a type of RNN that maps input 

vector into, an entirely different space – called latent space; while the decoder function is a 

complementary RNN that maps the encoded input to the target space. Both of them are 

incorporated together in the training process such that the input vector of last encoder hidden 

state becomes an input to decoder, which can learn to match training samples. The attention 

mechanism tends to a restriction of utilizing fixed-size encoder inputs when info arrangements 

themselves fluctuate in size. The instrument changes over crude content information into an 

appropriated portrayal stores the outcome, and utilizations a weighted normal of these element 

vectors as setting. The weights are found out by the model and switch back and forth between 

putting more weight or consideration regarding unique components of the information. An 

ongoing transformer design forgoes repeat and convolutions and solely depends on this 

consideration instrument to learn input-yield mappings. It has accomplished prevalent quality 

on machine interpretation errands while requiring considerably less time for preparing, not least 

since it very well may be parallelized. 

Adding more layers or increasing the depth of FNNs or CNNs allows them to take on more complex 

learning problems. Likewise, RNNs benefit from decomposing input-output mapping to multi-layers. 

Stacking recurrent layers is a typical way (for regression and classification tasks), which allows for 

lower layers to encapsulate high frequency data, processed by a higher layer into low frequency 

characteristics. Conceptually, RNNs, as such can make use of such long sequences. However, in reality, 

they toil to derive useful context information from distant past. Frequent multiplication whilst, Back-

prop, makes the gradient vanish or infinite. It has been shown that SGD shows serious issues in training 

10 to 20 elements RNN network. The solution has been presented in the form of leaky units or echo 

state networks. Skipping time steps or integrating different frequency signals are yet other proposed 

solutions. But the best proposed solution is using gated networks that keep tracks of (1) current state 

and (2) when to forget the data, which allows learning back to hundreds of time steps behind. The most 

popular are as follows:  

4. LSTM or Long Short Term Memory: Long short-term memory is a gated memory unit for 

neural networks. It utilizes gates that manage memory contents and elements of input sequence. 
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The gates are logistic functions of weighted sums, where back prop helps to find weights. It can 

learn, remember or recall, without any special training. A cell, an input gate, an output gate and 

a forget gate are typical components of LSTM network. The cell remembers values over 

arbitrary time intervals and the three gates regulate the flow of information into and out of the 

cell. The information flow in an LSTM cell is shown as: 

 

The transformation and passing of vectors enables the interaction of four parameterized layers. 

Layers consist of (1) Input gate (2) Output gate (3) forget gate. The white cells signify pair-wise 

operations, while layers are shown by grey cells as shown below: 
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LSTM Equations are given as: 

 

 

𝑓𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) 

 

𝑖𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) 

 

𝑜𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) 

 

𝑢𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐) 

 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 +  𝑖𝑡 ⊙ 𝑢𝑡 

 

ℎ𝑡 =  𝑜𝑡  ⊙ tanh(𝑐𝑡) 

 

 

5. GRU: Gated Recurrent units are a simplified extension of LSTM, while its role remains the 

same. It has two-fold difference – gates (number of which are 2) and weights. It has no control 

over memory content owing to the absence of output gate. The previous activation’s data flow 

is controlled by the update gate (1) as well as the new information (2), whereas a reset gate (3) 

is attached to said activation.  

 

𝑧𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑( 𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1  +  𝑏𝑧) 

 

𝑟𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑( 𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1  + 𝑏𝑟) 

 

ℎ𝑡 = 𝑧𝑡  ⊙  ℎ𝑡−1 + (1 − 𝑧𝑡)  ⊙ tanh( 𝑊ℎ𝑥𝑡 +  𝑈ℎ(𝑟𝑡  ⊙  ℎ𝑡−1  ) +  𝑏ℎ 

 

 

3.  PROCEDURE 

(A) Univariate Time-Series Regression to predict S&P500 

3.1 Data Preparation and Feature Engineering: 

We first obtain the S&P 500 index values from 2010 to 2019 from the website of FRED using pandas 

data reader that directly gives us data in tabular format. The data looks as follows: 
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Smart feature engineering – that extracts useful features from unstructured data and prepares it for 

training – is an important step in training process. We use the 𝑀𝑖𝑛𝑀𝑎𝑥𝑆𝑐𝑎𝑙𝑒𝑟() to scale the data 

between [0,1]. The scaling process is given as follows: 

𝒳 =  
𝑥 − min(𝑥)

max(𝑥) − min(𝑥)
 

We will simulate approx. 3 months or series of 63 consecutive trading days using one single LSTM 

layer that contains twenty hidden units to forecast one step ahead in time. Each LSTM layer must have 

3 dimensions namely Batch Size, Features, Time Steps represented as: 

 

For our data, S&P 500 has 2,463 time steps (observations). For a classification task we need a sliding 

window of 63 observations that will be utilized to create overlapping sequences from the rescaled data.  

A sample window using first five lags is shown as: 
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In generalized format for a “𝑆” sized window we have: 

𝑥𝑡 = 𝑓(𝑥𝑡−1, 𝑥𝑡−2, … … , 𝑥𝑡−𝑠)  ∀ 𝑡 = 𝑆, 𝑆 + 1, … 𝑇 

The 2019 data will be used as test data after reshaping features to add necessary third dimension. This 

is called as the train-test split.   

3.2 Model Architecture: 

𝐾𝑒𝑟𝑎𝑠 from 𝑇𝑒𝑛𝑠𝑜𝑟𝐹𝑙𝑜𝑤 has all the necessary inbuilt functionality to build our requisite, single LSTM 

and two-layer RNN. The specifications for model are: 

 

Few important arguments for LSTM class are the Activation Function, Optimizer (we have used 

𝑅𝑀𝑆𝑃𝑟𝑜𝑝 optimizer with default in built settings),  Loss (as mean-squared-error for a regression-type 

problem), with an Early Stopping callback to train for 500 epochs. The model summary shows a total 

of 491 parameters.  
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After 139 epochs, the training stops. The below figure shows a five epoch rolling average of validation 

and training Root Mean Square Error, signifying the best epoch with a loss of 0.998%.

 

The out-of-sample performance – i.e. on the rescaled 2019 data with IC of 0.9899 – is given below.  

 

 

(B) Stacked LSTM – predicting price moves and returns 

A stacked and deeper model is now built using two LSTM layers using stock price data from 𝑄𝑢𝑎𝑛𝑑𝑙 

. Non-sequential features like indicator variables that assist in describing the type of equity and month 

will also be incorporated into the mix. A sample of stacked LSTM with multiple features is given as: 
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3.3 Data Preparation and Feature Engineering: 

The weekly returns data is gathered for ~2500 stocks in time-period 2008-2017. A stack of rolling 

sequences of 52 weekly returns for each ticker and week is generated followed by removing outliers to 

data at 1 & 99 percent level, along with a label indicating positive or negative weekly return. Multiple 

inputs comprise of (1) 52 weeks of lagged returns (2) encoding for each of 12 months (3) encoding for 

tickers. The train data comprises of 2009-2016 data, while a hold out set of 2017 data is created.  

3.4 Model Architecture: 

The model architecture is defined as follows: 

 

We shall use the RMSProp optimizer with default settings and compute the AUC metric that we'll use 

for early stopping (50 epochs) on the training set. The below plots shows the cross validation 

perfomance on Stacked LSTM classification, the training stopping after 8 epochs and evaluate the 
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model performance.  

 

Test AUC Test Accuracy 
IC for test predicition and 

actual weekly returns 

0.685607154498662 0.62186058141098694 0.3175589786542647 

 

To predict numerical returns rather than simply directional movements (i.e. a regression task), we do 

some minor changes as follows.  

 

 

 

The results of Stacked LSTM regression on out of sample data are: 

Average Weekly IC Entire Period IC 
Return differential between 

top and bottom quintiles 

3.32 6.68 20 basis points 
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4. CONCLUSION AND NEXT STEPS: 

This paper aimed to explore and describe several concepts of the applying recurrent neural networks to 

time series forecasting (univariate), though it is by far not comprehensive. RNN’s – tailored to 

sequential data – surely have an upper hand with respect to linear models used in time series forecasting. 

The paper began by reviewing a working architecture of RNN, analysis of the computational graph and 

RNN’s overcoming of FFNNS and CNNs to capture long-range dependencies in data. We also 

reviewed Vanishing and Exploding gradient problems and saw how LSTM and GRUs assist in learning 

several time steps back. Finally, we applied a RNN in an algorithmic trading enviroment to predict 

univarite timeseries returns.  

Neural networks don’t provide much information in describing the process that drives time series, 

however they are certainy helpuful in forecasting processes. Mutli-period forecasts do generate higher 

errors and step ahead forecast. Direction change predicitions generated smaller errors too. Forecasting 

framework can be enhanced in several ways. RNN’s can be improved by bagging. Feature engineering 

to improve input parameters can certainly help. For example, taking different features across different 

time periods to generate high quality forecasts.  Lastly the choice of keras input parameters – like the 

choice of optimizers (Adam, SGD etc.) or hyperparameter tuning will certainly impact model 

performance. We did not aim to find best parameters for this paper using Grid Search or Random 

Search. There is so much left to be done. RNNs clearly deserve a seat in the toolbox of time series 

forecasting. 
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