
International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2020, Vol. No. 20, Issue No. IV, October e-ISSN: 2231-5152, p-ISSN: 2454-1796

17

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH

USING LSTM BASED RNN ON TIME SERIES DATA TO

PREDICT STOCK INDEX VALUES AND CLASSIFY ASSET

PRICE MOVEMENTS

Lavaneesh Sharma

ABSTRACT:

We propose designing and training RNNs for univariate time series data to forecast future values on S&P 500

data. Firstly, time series data will be prepared, within a single LSTM layer framework that will help to predict

stock index values. Secondly, we will build a deep RNN with three inputs to classify asset price movements.

Lastly, we will combine 2 layer, stacked LSTM with learned embedding’s and one-hot encoded categorical data.

The paper also gives a brief overview of Recurrent Neural Networks and their popular architectures currently

in use.

1. INTRODUCTION:

The conventional neural network like Feedforward Neural Networks treat every sample feature vector

as identically distributed and independent. As such they don’t incorporate previous data samples, while

evaluating current observation and are memoryless. Recurrent Neural Networks on the other hand are

memory based neural networks. What truly sets them apart from CNN’s and other neural networks is

that each output is obtained using both previous information and new one, which, in recurrent format,

when used for given set of fixed computations, enables a parameter sharing across deeper

computational graph.

1.1 Neural Networks: Neural Networks are supervised type Machine Learning algorithm that imitate

the functioning of brain cells or neurons. The supervised Machine learning algorithms are used to

generate or predict a set of labels for new data, based on learnings from a fixed set of previous data.

The output can be Continuous (Regression) or Discrete (Classification).

The associations of the organic neuron are displayed as weights. A negative weight signifies inhibitory

associations; while positive weight mirrors an excitatory association. All data sources are changed by

a weight and added, in the form of a linear combination. At last, an activation function controls the

output’s amplitude. For instance, a satisfactory result is normally somewhere in the range of 0 and 1,

or it very well may be ± 1.

1.2 Recurrent Neural Networks: RNNs are neural networks for successive information, thusly we

apply them to time series. The fundamental thought behind repetitive neural organizations is utilizing

not just current inputs, yet in addition, the past data, for making the current forecast. This thought bodes

well as we could fabricate neural networks passing qualities forward as expected. Although, such

straightforward arrangements generally don't fill in true to form. They are difficult to prepare and might

perform as expect. Or maybe, we have to have a framework with some sort of memory. RNNs find

International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2020, Vol. No. 20, Issue No. IV, October e-ISSN: 2231-5152, p-ISSN: 2454-1796

18

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH

their use in sequential data wherein we find patterns evolving over time and the learning usually

incorporates memory of previous data-points.

Different Sequence to Sequence models

RNN’s maintain an internal state capturing information about previous items. A baseline model or a

computational graph (uncontrolled) is shown below that has two weight matrix’s given by 𝑊ℎℎ and

𝑊ℎ𝑥 applicable to previous and current inputs respectively. The output is given by 𝑦𝑡 which is obtained

by matrix multiplication and the resultant passed through an activation function like 𝑅𝑒𝐿𝑈 or tanh 𝑥

International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2020, Vol. No. 20, Issue No. IV, October e-ISSN: 2231-5152, p-ISSN: 2454-1796

19

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH

1.3 Backpropagation algorithm is carried out from right to left (output to input side), post updating

the weights in the forward pass from left to right i.e. input to output vis-à-vis unrolled computational

graph. It constantly evaluates a loss function and calculates its gradient (∇) w.r.t. parameters to update

weights. Hence the name, backpropagation.

2. RNN ARCHITECTURE REVIEW

1. Output Recurrence and teacher forcing: The computational difficulty of hidden state

recurrences stems from connecting a unit’s hidden state to itself. This can be eased by

connecting it to the output directly. As such, it has capacity w.r.t baseline model decreases but,

parallel training of decoupled time steps is possible. But, for effective learning, it is also

imperative that the train samples reflect this information for backpropagation to update weights

consequently. Financial data usually doesn’t meet this requirement as asset returns are usually

uncorrelated to previous values. The simultaneous integration of prior output and input vectors

in called teacher forcing.

2. Bi-Directional RNN: It can sometimes be relevant that output may rely on future elements too.

As such Bi-directional RNN’s are known to link 2 hidden layers of opposite-directions, to same

output. Therefore, we can obtain such a network, by splitting a regular RNN’s neurons into 2

directions, in such a way that, the output layer can get information backwards (from past) and

forward (from future) states simultaneously. General structures are depicted as:

International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2020, Vol. No. 20, Issue No. IV, October e-ISSN: 2231-5152, p-ISSN: 2454-1796

20

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH

3. Encoder-Decoder architecture, attention and transformers: Encoder-decoder architectures

allow for equal length input & output sequences. The encoder is a type of RNN that maps input

vector into, an entirely different space – called latent space; while the decoder function is a

complementary RNN that maps the encoded input to the target space. Both of them are

incorporated together in the training process such that the input vector of last encoder hidden

state becomes an input to decoder, which can learn to match training samples. The attention

mechanism tends to a restriction of utilizing fixed-size encoder inputs when info arrangements

themselves fluctuate in size. The instrument changes over crude content information into an

appropriated portrayal stores the outcome, and utilizations a weighted normal of these element

vectors as setting. The weights are found out by the model and switch back and forth between

putting more weight or consideration regarding unique components of the information. An

ongoing transformer design forgoes repeat and convolutions and solely depends on this

consideration instrument to learn input-yield mappings. It has accomplished prevalent quality

on machine interpretation errands while requiring considerably less time for preparing, not least

since it very well may be parallelized.

Adding more layers or increasing the depth of FNNs or CNNs allows them to take on more complex

learning problems. Likewise, RNNs benefit from decomposing input-output mapping to multi-layers.

Stacking recurrent layers is a typical way (for regression and classification tasks), which allows for

lower layers to encapsulate high frequency data, processed by a higher layer into low frequency

characteristics. Conceptually, RNNs, as such can make use of such long sequences. However, in reality,

they toil to derive useful context information from distant past. Frequent multiplication whilst, Back-

prop, makes the gradient vanish or infinite. It has been shown that SGD shows serious issues in training

10 to 20 elements RNN network. The solution has been presented in the form of leaky units or echo

state networks. Skipping time steps or integrating different frequency signals are yet other proposed

solutions. But the best proposed solution is using gated networks that keep tracks of (1) current state

and (2) when to forget the data, which allows learning back to hundreds of time steps behind. The most

popular are as follows:

4. LSTM or Long Short Term Memory: Long short-term memory is a gated memory unit for

neural networks. It utilizes gates that manage memory contents and elements of input sequence.

International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2020, Vol. No. 20, Issue No. IV, October e-ISSN: 2231-5152, p-ISSN: 2454-1796

21

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH

The gates are logistic functions of weighted sums, where back prop helps to find weights. It can

learn, remember or recall, without any special training. A cell, an input gate, an output gate and

a forget gate are typical components of LSTM network. The cell remembers values over

arbitrary time intervals and the three gates regulate the flow of information into and out of the

cell. The information flow in an LSTM cell is shown as:

The transformation and passing of vectors enables the interaction of four parameterized layers.

Layers consist of (1) Input gate (2) Output gate (3) forget gate. The white cells signify pair-wise

operations, while layers are shown by grey cells as shown below:

International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2020, Vol. No. 20, Issue No. IV, October e-ISSN: 2231-5152, p-ISSN: 2454-1796

22

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH

LSTM Equations are given as:

𝑓𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓)

𝑖𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖)

𝑜𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜)

𝑢𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐)

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑢𝑡

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡)

5. GRU: Gated Recurrent units are a simplified extension of LSTM, while its role remains the

same. It has two-fold difference – gates (number of which are 2) and weights. It has no control

over memory content owing to the absence of output gate. The previous activation’s data flow

is controlled by the update gate (1) as well as the new information (2), whereas a reset gate (3)

is attached to said activation.

𝑧𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧)

𝑟𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟)

ℎ𝑡 = 𝑧𝑡 ⊙ ℎ𝑡−1 + (1 − 𝑧𝑡) ⊙ tanh(𝑊ℎ𝑥𝑡 + 𝑈ℎ(𝑟𝑡 ⊙ ℎ𝑡−1) + 𝑏ℎ

3. PROCEDURE

(A) Univariate Time-Series Regression to predict S&P500

3.1 Data Preparation and Feature Engineering:

We first obtain the S&P 500 index values from 2010 to 2019 from the website of FRED using pandas

data reader that directly gives us data in tabular format. The data looks as follows:

International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2020, Vol. No. 20, Issue No. IV, October e-ISSN: 2231-5152, p-ISSN: 2454-1796

23

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH

Smart feature engineering – that extracts useful features from unstructured data and prepares it for

training – is an important step in training process. We use the 𝑀𝑖𝑛𝑀𝑎𝑥𝑆𝑐𝑎𝑙𝑒𝑟() to scale the data

between [0,1]. The scaling process is given as follows:

𝒳 =
𝑥 − min(𝑥)

max(𝑥) − min(𝑥)

We will simulate approx. 3 months or series of 63 consecutive trading days using one single LSTM

layer that contains twenty hidden units to forecast one step ahead in time. Each LSTM layer must have

3 dimensions namely Batch Size, Features, Time Steps represented as:

For our data, S&P 500 has 2,463 time steps (observations). For a classification task we need a sliding

window of 63 observations that will be utilized to create overlapping sequences from the rescaled data.

A sample window using first five lags is shown as:

International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2020, Vol. No. 20, Issue No. IV, October e-ISSN: 2231-5152, p-ISSN: 2454-1796

24

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH

In generalized format for a “𝑆” sized window we have:

𝑥𝑡 = 𝑓(𝑥𝑡−1, 𝑥𝑡−2, … … , 𝑥𝑡−𝑠) ∀ 𝑡 = 𝑆, 𝑆 + 1, … 𝑇

The 2019 data will be used as test data after reshaping features to add necessary third dimension. This

is called as the train-test split.

3.2 Model Architecture:

𝐾𝑒𝑟𝑎𝑠 from 𝑇𝑒𝑛𝑠𝑜𝑟𝐹𝑙𝑜𝑤 has all the necessary inbuilt functionality to build our requisite, single LSTM

and two-layer RNN. The specifications for model are:

Few important arguments for LSTM class are the Activation Function, Optimizer (we have used

𝑅𝑀𝑆𝑃𝑟𝑜𝑝 optimizer with default in built settings), Loss (as mean-squared-error for a regression-type

problem), with an Early Stopping callback to train for 500 epochs. The model summary shows a total

of 491 parameters.

International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2020, Vol. No. 20, Issue No. IV, October e-ISSN: 2231-5152, p-ISSN: 2454-1796

25

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH

After 139 epochs, the training stops. The below figure shows a five epoch rolling average of validation

and training Root Mean Square Error, signifying the best epoch with a loss of 0.998%.

The out-of-sample performance – i.e. on the rescaled 2019 data with IC of 0.9899 – is given below.

(B) Stacked LSTM – predicting price moves and returns

A stacked and deeper model is now built using two LSTM layers using stock price data from 𝑄𝑢𝑎𝑛𝑑𝑙

. Non-sequential features like indicator variables that assist in describing the type of equity and month

will also be incorporated into the mix. A sample of stacked LSTM with multiple features is given as:

International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2020, Vol. No. 20, Issue No. IV, October e-ISSN: 2231-5152, p-ISSN: 2454-1796

26

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH

3.3 Data Preparation and Feature Engineering:

The weekly returns data is gathered for ~2500 stocks in time-period 2008-2017. A stack of rolling

sequences of 52 weekly returns for each ticker and week is generated followed by removing outliers to

data at 1 & 99 percent level, along with a label indicating positive or negative weekly return. Multiple

inputs comprise of (1) 52 weeks of lagged returns (2) encoding for each of 12 months (3) encoding for

tickers. The train data comprises of 2009-2016 data, while a hold out set of 2017 data is created.

3.4 Model Architecture:

The model architecture is defined as follows:

We shall use the RMSProp optimizer with default settings and compute the AUC metric that we'll use

for early stopping (50 epochs) on the training set. The below plots shows the cross validation

perfomance on Stacked LSTM classification, the training stopping after 8 epochs and evaluate the

International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2020, Vol. No. 20, Issue No. IV, October e-ISSN: 2231-5152, p-ISSN: 2454-1796

27

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH

model performance.

Test AUC Test Accuracy
IC for test predicition and

actual weekly returns

0.685607154498662 0.62186058141098694 0.3175589786542647

To predict numerical returns rather than simply directional movements (i.e. a regression task), we do

some minor changes as follows.

The results of Stacked LSTM regression on out of sample data are:

Average Weekly IC Entire Period IC
Return differential between

top and bottom quintiles

3.32 6.68 20 basis points

International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2020, Vol. No. 20, Issue No. IV, October e-ISSN: 2231-5152, p-ISSN: 2454-1796

28

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH

4. CONCLUSION AND NEXT STEPS:

This paper aimed to explore and describe several concepts of the applying recurrent neural networks to

time series forecasting (univariate), though it is by far not comprehensive. RNN’s – tailored to

sequential data – surely have an upper hand with respect to linear models used in time series forecasting.

The paper began by reviewing a working architecture of RNN, analysis of the computational graph and

RNN’s overcoming of FFNNS and CNNs to capture long-range dependencies in data. We also

reviewed Vanishing and Exploding gradient problems and saw how LSTM and GRUs assist in learning

several time steps back. Finally, we applied a RNN in an algorithmic trading enviroment to predict

univarite timeseries returns.

Neural networks don’t provide much information in describing the process that drives time series,

however they are certainy helpuful in forecasting processes. Mutli-period forecasts do generate higher

errors and step ahead forecast. Direction change predicitions generated smaller errors too. Forecasting

framework can be enhanced in several ways. RNN’s can be improved by bagging. Feature engineering

to improve input parameters can certainly help. For example, taking different features across different

time periods to generate high quality forecasts. Lastly the choice of keras input parameters – like the

choice of optimizers (Adam, SGD etc.) or hyperparameter tuning will certainly impact model

performance. We did not aim to find best parameters for this paper using Grid Search or Random

Search. There is so much left to be done. RNNs clearly deserve a seat in the toolbox of time series

forecasting.

5. REFERENCES

• Sequence Modeling: Recurrent and Recursive Nets, Deep Learning Book, Chapter 10, Ian

Goodfellow, Yoshua Bengio and Aaron Courville, MIT Press, 2016

• Understanding LSTM Networks, Christopher Olah, 2015

• An Empirical Exploration of Recurrent Network Architectures, Rafal Jozefowicz, Ilya Sutskever,

et al, 2015

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://proceedings.mlr.press/v37/jozefowicz15.pdf

International Journal of Advances in Engineering Research http://www.ijaer.com

(IJAER) 2020, Vol. No. 20, Issue No. IV, October e-ISSN: 2231-5152, p-ISSN: 2454-1796

29

INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING RESEARCH

• S. Selvin , R. Vinayakumar , E. A. Gopalakrishnan , V. K. Menon and K. P. Soman.(2017) ”Stock

price prediction using LSTM, RNN and CNN-sliding window model.” International Conference on

Advances in Computing, Communications and Informatics: 1643-1647.

• Rather A. M., Agarwal A., and Sastry V. N. (2015). ”Recurrent neural network and a hybrid model

for prediction of stock returns.”Expert Systems with Applications 42 (6): 3234-3241.

• Zhang G., Patuwo B. E., and Hu M. Y. (1998). ”Forecasting with artificial neural networks: The

state of the art.” International journal of forecasting 14 (1): 35-62.

• Jabin S. (2014). ”Stock market prediction using feed-forward artificial neural network”. growth 99

(9).

• Sepp Hochreiter and Jurgen Schmidhuber. Long short-term memory. Neural computation,

9(8):1735-1780, 1997.

• Moghaddam A. H., Moghaddam M. H., and Esfandyari M. (2016) ”Stock market index prediction

using artificial neural network.” Journal of Economics, Finance and Administrative Science 21

(41): 89-93.

• Roman J., and Jameel A. (1996). ”Backpropagation and recurrent neural networks in financial

analysis of multiple stock market returns.” In Twenty-Ninth Hawaii International Conference on

system sciences 2: 454-460.

• Mizuno H., Kosaka M., Yajima H. and Komoda N. (1998). ”Application of neural network to

technical analysis of stock market prediction.”Studies in Informatic and control 7 (3): 111-120.

• Budhani N., Jha C. K., and Budhani S. K. (2014).” Prediction of stock market using artificial neural

network.”In Soft Computing Techniques for Engineering and Technology (ICSCTET) : 1-8

• Zaiyong Tang, Chrys De Almeida, and Paul A Fishwick. Time series forecasting using neural

networks vs. box-jenkins methodology. Simulation, 57(5):303-310, 1991.

• Guoqiang Zhang, B Eddy Patuwo, and Michael Y Hu. Forecasting with artificial neural networks:

The state of the art. International journal of forecasting,14(1):35-62, 1998

• John Cristian Borges Gamboa. Deep learning for time-series analysis. arXiv preprint

arXiv:1701.01887, 2017.

• Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical

evaluation of gated recurrent neural networks on sequence modeling.

arXiv preprint arXiv:1412.3555, 2014.

• B. Bakker. Reinforcement Learning with Long Short-Term Memory. In Advances in Neural

Information Processing Systems, 14, 2002.

• Wang J. Z., Wang J. J., Zhang Z. G. and Guo S. P. (2011). ”Forecasting stock indices with back

propagation neural network.” Expert Systems with Applications 38 (11): 14346-14355.

• Karpathy A., Johnson J. and Fei-Fei L. (2015). ”Visualizing and understanding recurrent

networks.”arXiv preprint arXiv :1506.02078

• Guresen E., Kayakutlu G., and Daim T. U. (2011). ” Using artificial neural network models in stock

market index prediction.” Expert Systems with Applications 38 (8): 10389-10397

• Abinaya P., Kumar V.S., Balasubramanian P. and Menon V.K. (2016). ”Measuring stock price and

trading volume causality among Nifty50 stocks: The Toda Yamamoto method.” In Advances in

Computing, Communications and Informatics (ICACCI) :1886-1890

